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What Are Magnetosheath Jets? Not All Jets Hit the Magnetopause

We see that a large majority of jets are dissipated or

* Magnetosheath jets are pulses of high dynamic pressure that originate at the broken up before they reach the magnetopause.
bow shock and propagate Earthward. 0.2 : —

«  They are thought to originate at ripples in the bow shock (Hietala et al., 2009, : i s
2012). 015 | s s R R

* Large (> 2 Rg) jets are predicted to hit the magnetopause several times an ! — — 'wmp
hour, with smaller jets impacting hundreds of times an hour (Plaschke et al., i RBS - RMP

2016, 2020).

+ If they impact the magnetopause, they can cause magnetospheric effects
such as magnetopause reconnection (Hietala et al., 2018, Nykyri et al., 2019)
and surface waves (e.g., Archer et al., 2019).
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Figure 2: Probability distribution (black) for jet observation
location within a model magnetosheath. Jets are most likely
to be observed shortly downstream of the bow shock.
Observation locations are expressed in terms of the
fractional distance through the magnetosheath, F.

Research Questions

In order to forecast the effects of magnetosheath jets, we
need to know:

Figure 1: Cartoon illustrating
the role of magnetosheath jets ~foreshock
and their observed effects in
the dayside magnetosphere.
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1. What solar wind conditions control jet formation?

2. What solar wind conditions control jet propagation?

3. When will jets impact the magnetopause most often?
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Data Set and Methods What Solar Wind Conditions Control Jet Formation?

* We use a data set of 13,096 jet observations made by the THEMIS Z) 04 b)
spacecraft from 2008-2018, selected from 8949.4 hours where E 0.2
THEMIS was in the magnetosheath. E Figure 3:
» Each magnetosheath measurement is associated with upstream S 02 0.1 Distributions of
solar wind conditions from the OMNI database. ‘5 upstream solar wind
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Figure 4: Cartoon of the parameter space explored to determine how solar solar wind density (cm ™)

wind conditions affect jet propagation.
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What Solar Wind Conditions Control Jet Propagation? When Will Jets Impact the Magnetopause Most Often?
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Figure 5: Separating near-magnetopause and near-bow shock jets. Differences in b0 08 0250 075 050250
the distributions indicate a parameter may influence jet propagation depth. °) , solar wind Py (nPa) f) ;. Alfvén Mach no.
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] o . . Figure 7: Histograms combining jet formation and propagation effects
Figure 6: Separating jets by high and low threshold values of each solar wind to assess the difference in rates of jets reaching the magnetopause

parameter. Low IMF cone angle, high solar wind speed, high dynamic pressure, under different solar wind conditions.
high IMF magnitude, and low 8 appear to promote jet propagation.
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Conclusions and Future How Might Jets Affect Magnetopause Reconnection?
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Figure 8: Preliminary studies on jet properties at the magnetopause. Their magnetic field vectors may promote
reconnection, but they may suppress it by virtue of their B. The overall effect on magnetopause reconnection is
therefore not yet clear.

* We therefore need to
understand the properties of
jets near the magnetopause
to see how likely they are to
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